What is the quotient of #-18x^-2+27x^-2-72x^-8# and 9x?

1 Answer
Nov 24, 2016

#x^-3 - 8x^-9# or #1/x^3 - 8/x^9#

Explanation:

This problem can be written as, what is:

#(-18x^-2 + 27x^-2 - 72x^-8)/(9x)#

First, we can combine like terms:

#((-18 + 27)x^-2 - 72x^-8)/(9x)#

#(9x^-2 - 72x^-8)/(9x)#

We can now rewrite this as two separate fractions:

#(9x^-2)/(9x) - (72x^-8)/(9x)#

#(9/9)(x^-2/x^1) - (72/9)(x^-8/x^1)#

Dividing the constants and using the rules of exponents we get:

#1(x^(-2-1))# - 8(x^(-8 - 1))#

#x^-3 - 8x^-9#