# What is the slope of the line passing through the following points:  ( -1, 5) , (4, -8)?

Apr 22, 2016

The slope $= \frac{- 13}{5}$

#### Explanation:

$\left(- 1 , 5\right) = \textcolor{b l u e}{{x}_{1} , {y}_{1}}$

$\left(4 , - 8\right) = \textcolor{b l u e}{{x}_{2} , {y}_{2}}$

The slope is calculated using formula:

Slope =color(blue)((y_2 - y_1)/ (x_2 - x_1)

$= \frac{- 8 - 5}{4 - \left(- 1\right)}$

$= \frac{- 13}{4 + 1}$

$= \frac{- 13}{5}$

Apr 22, 2016

The slope $= \frac{- 13}{5}$

#### Explanation:

$\left(- 1 , 5\right) = \textcolor{b l u e}{{x}_{1} , {y}_{1}}$

$\left(4 , - 8\right) = \textcolor{b l u e}{{x}_{2} , {y}_{2}}$

The slope is calculated using formula:

Slope =color(blue)((y_2 - y_1)/ (x_2 - x_1)

$= \frac{- 8 - 5}{4 - \left(- 1\right)}$

$= \frac{- 13}{4 + 1}$

$= \frac{- 13}{5}$

Apr 22, 2016

The slope $= \frac{- 13}{5}$

#### Explanation:

$\left(- 1 , 5\right) = \textcolor{b l u e}{{x}_{1} , {y}_{1}}$

$\left(4 , - 8\right) = \textcolor{b l u e}{{x}_{2} , {y}_{2}}$

The slope is calculated using formula:

Slope =color(blue)((y_2 - y_1)/ (x_2 - x_1)

$= \frac{- 8 - 5}{4 - \left(- 1\right)}$

$= \frac{- 13}{4 + 1}$

$= \frac{- 13}{5}$