What is the solution to the equation #(cos x)/(sin2x) = 5/7# for #0<=x<=4pi#?

1 Answer
Feb 19, 2017

#44^@43; 90^@; 155^@57; 270^@; 224^@43; 450^@; 515^@57; 630^@#

Explanation:

Cross multiply:
5sin 2x = 7cos x
5sin 2x - 7cos x = 0
Use trig identity: sin 2x = 2sin x.cos x.
10sin x.cos x - 7cos x = 0
cos x (10 sin x - 7) = 0
a/ cos x = 0 --> Unit circle gives two answers:
#x = pi/2 + 2kpi#, and #x = (3pi)/2 + 2kpi#
b. 10 sin x = 7 --> #sin x = 7/10# --> Calculator and unit circle
give 2 answers:
#x = 44^@43 + k360^@#, and #x = 155^@57 + k360^@#
For answers in (360, 720) add #360^@# (k = 1)
Answers for #(0, 720^@)#
#44^@43, 90^@, 155^@57, 270^@, 224^@43, 450^@, 515^@57, 630^@#