What is the sum of #1, 4, 16, 64, ..., a_10#?
1 Answer
Nov 15, 2015
Explanation:
This is a geometric sequence with initial term
#a_1 = 1#
#a_n = a_1 * 4^(n-1) = 4^(n-1)#
#sum_(n=1)^10 4^(n-1) = 1/3(4-1) sum_(n=1)^10 4^(n-1)#
#=1/3(4 sum_(n=1)^10 4^(n-1) - sum_(n=1)^10 4^(n-1))#
#=1/3(sum_(n=2)^11 4^(n-1) - sum_(n=1)^10 4^(n-1))#
#=1/3(4^10 + color(red)(cancel(color(black)(sum_(n=2)^10 4^(n-1)))) - 1 - color(red)(cancel(color(black)(sum_(n=2)^10 4^(n-1)))))#
#=1/3(4^10-1)#
#=1/3(2^20-1)#
#=1/3(1048576-1)#
#=1048575/3#
#= 349525#