What is the value of #cos[pi/3-pi/4]#?

1 Answer
Jul 29, 2016

#(sqrt2 + sqrt6)/4#

Explanation:

Apply the trig identity:
cos (a - b) = cos a.cos b + sin a.sin b
#cos (pi/3 - pi/4) = cos (pi/3).cos (pi/4) + sin (pi/3).sin (pi/4) =#
Trig table of special arcs gives:
#cos (pi/3) = 1/2# , and #cos (pi/4) = sqrt2/2#
#sin (pi/3) = sqrt3/2#, and #sin (pi/4) = sqrt2/2#
There for:
#cos (pi/3 - pi/4) = (1/2)(sqrt2/2) + (sqrt3/2)(sqrt2/2) = #
#= sqrt2/4 + sqrt6/4 = (sqrt2 + sqrt6)/4#