What is the value of #cosh(ln3)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer sjc Nov 8, 2016 #cosh(ln3)=5/3# Explanation: #Coshx=1/2(e^x+e^-x) AAx inRR# so #cosh(ln3)=1/2(e^(ln3)+e^-ln3)# #cosh(ln3)=1/2(e^(ln3)+e^ln(1/3))# #cosh(ln3)=1/2(3+1/3)=1/2(10/3)# #cosh(ln3)=5/3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 16979 views around the world You can reuse this answer Creative Commons License