What is #x# in the equation #-3.1(2x + 5) = -5.7 - 1.3x#?

1 Answer
Feb 3, 2017

#x=-2#

Explanation:

distribute the bracket on the left side of the equation.

#rArr-6.2x-15.5=-5.7-1.3x#

collect terms in x on the left side and numeric values on the right side.

add 1.3x to both sides.

#-6.2x+1.3x-15.5=-5.7cancel(-1.3x)cancel(+1.3x)#

#rArr-4.9x-15.5=-5.7#

add 15.5 to both sides.

#-4.9xcancel(-15.5)cancel(+15.5)=-5.7+15.5#

#rArr-4.9x=9.8#

To solve for x, divide both sides by - 4.9

#(cancel(-4.9) x)/cancel(-4.9)=9.8/(-4.9)#

#rArrx=-2#

#color(blue)"As a check"#

Substitute this value into the equation and if the left side equals the right side then it is the solution.

#"left side "=-3.1(-4+5)=-3.1#

#"right side "=-5.7-(-2.6)=-5.7+2.6=-3.1#

#rArrx=-2" is the solution"#