What's the integral of #int (tan(x))^2 * sec(x) dx#?

1 Answer
Aug 2, 2016

#(secxtanx-ln(abs(secx+tanx)))/2+C#

Explanation:

We have:

#I=inttan^2xsecxdx#

Write #tan^2x# as #sec^2x-1#.

#I=int(sec^2x-1)secxdx#

#I=intsec^3xdx-intsecxdx#

The second is a commonly known integral:

#I=intsec^3xdx-ln(abs(secx+tanx))#

Now, for the remaining integral, we will try to use integration by parts, which takes the form:

#intudv=uv-intvdu#

So, let:

#{(u=secx" "=>" "du=secxtanxdx),(dv=sec^2xdx" "=>" "v=tanx):}#

Thus:

#I=secxtanx-intsecxtan^2xdx-ln(abs(secx+tanx))#

Now, notice that we have #intsecxtan^2xdx# in the problem here, which is what we started with. So, we also know that:

#intsecxtan^2xdx=secxtanx-intsecxtan^2xdx-ln(abs(secx+tanx))#

Add #intsecxtan^2xdx# to both sides:

#2intsecxtan^2xdx=secxtanx-ln(abs(secx+tanx))#

Divide both sides by #2#:

#intsecxtan^2xdx=(secxtanx-ln(abs(secx+tanx)))/2+C#