What's the integral of #int tanx / (cosx)^2 dx#?

2 Answers
Nov 2, 2015

#int tanx / (cosx)^2 dx = 1/2 sec^2x +C# (Or, equivalently #1/2tan^2x +C#, depending on method used.)

Explanation:

Method 1

#tanx/cos^2x = sinx/cosx 1/cos^2x = sinx (cosx)^-3#

Integrate by substitution with #u=cosx#.

Method 2

#tanx/cos^2x = tanx seec^2x = (secx)(secxtanx)#

Integrate by substitution with #u=secx#.

Method 3

#tanx/cos^2x = tanx seec^2x#

Integrate by substitution with #u=tanx#.

This method gets the antiderivative in the form #1/2tan^2x + C#

Nov 2, 2015

I found: #1/(2cos^2(x))+c#

Explanation:

I would write it as:
#int(tan(x))/cos^2(x)dx=intsin(x)/cos(x)1/cos^2(x)dx=intsin(x)/cos^3(x)dx=#
I can use the fact that:
#d[cos(x)]=-sin(x)dx# to write:
#int-(d[cos(x)])/cos^3(x)=int-cos^-3(x)(d[cos(x)])=# where #cos(x)# is our variable of integration; giving:
#=-cos^-2/-2+c=1/(2cos^2(x))+c#