Where does the parabola #x^2-3x=40# have roots?
1 Answer
May 11, 2017
Explanation:
#"rearrange and equate to zero"#
#rArrx^2-3x-40=0#
#"splitting the middle term gives"#
#x^2-8x+5x-40=0#
#"factorising"#
#x(x-8)+5(x-8)=0#
#"taking out the factor " (x-8)#
#rArr(x-8)(x+5)=0larr" equate each factor to zero"#
#x-8=0rArrx=8#
#x+5=0rArrx=-5#
#rArrx=-5" and " x=8" are the roots"#
graph{x^2-3x-40 [-10, 10, -5, 5]}