Write the complex number in Cartesian form: #e^((ln4-ipi)/4)# How do I do that?
1 Answer
Mar 27, 2018
Explanation:
Euler's formula tells us:
#e^(i theta) = cos theta + i sin theta#
So we find:
#e^((ln 4 - ipi)/4) = e^((ln 4)/4) * e^(-(ipi)/4)#
#color(white)(e^((ln 4 - ipi)/4)) = 4^(1/4)(cos(-pi/4) + i sin(-pi/4))#
#color(white)(e^((ln 4 - ipi)/4)) = sqrt(2)(sqrt(2)/2 - sqrt(2)/2 i)#
#color(white)(e^((ln 4 - ipi)/4)) = 1-i#