# y=sin^2(lnx^2) What is dy/dx ?

## $y = {\sin}^{2} \left(\ln {x}^{2}\right)$ . Find $\frac{\mathrm{dy}}{\mathrm{dx}}$

##### 2 Answers
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Answer

Write a one sentence answer...

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

1
Apr 21, 2018

#### Answer:

$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{4 \sin \left(\ln \left({x}^{2}\right)\right) \cos \left(\ln \left({x}^{2}\right)\right)}{x}$

#### Explanation:

We use the chain rule twice here:

$\frac{d}{\mathrm{dx}} \left[f \left(g \left(x\right)\right)\right] = f ' \left(g \left(x\right)\right) \cdot g ' \left(x\right)$

$\implies \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{d}{\mathrm{dx}} \left[{\sin}^{2} \left(\ln \left({x}^{2}\right)\right)\right]$

Some rules to recall here:

$\frac{d}{\mathrm{dx}} \left[{x}^{n}\right] = n {x}^{n - 1}$ if $n$ is a constant.

$\frac{d}{\mathrm{dx}} \left[\ln \left(x\right)\right] = \frac{1}{x}$

$\frac{d}{\mathrm{dx}} \left[\sin x\right] = \cos x$

$\implies \frac{\mathrm{dy}}{\mathrm{dx}} = 2 \cdot \sin \left(\ln \left({x}^{2}\right)\right) \cdot \frac{d}{\mathrm{dx}} \left[\sin \left(\ln \left({x}^{2}\right)\right)\right]$

$\implies \frac{\mathrm{dy}}{\mathrm{dx}} = 2 \cdot \sin \left(\ln \left({x}^{2}\right)\right) \cdot \cos \left(\ln \left({x}^{2}\right)\right) \cdot \frac{d}{\mathrm{dx}} \left[\ln \left({x}^{2}\right)\right]$

$\implies \frac{\mathrm{dy}}{\mathrm{dx}} = 2 \cdot \sin \left(\ln \left({x}^{2}\right)\right) \cdot \cos \left(\ln \left({x}^{2}\right)\right) \cdot \frac{1}{{x}^{2}} \cdot \frac{d}{\mathrm{dx}} \left[{x}^{2}\right]$

$\implies \frac{\mathrm{dy}}{\mathrm{dx}} = 2 \cdot \sin \left(\ln \left({x}^{2}\right)\right) \cdot \cos \left(\ln \left({x}^{2}\right)\right) \cdot \frac{1}{{x}^{2}} \cdot 2 x$

$\implies \frac{\mathrm{dy}}{\mathrm{dx}} = 4 \cdot \sin \left(\ln \left({x}^{2}\right)\right) \cdot \cos \left(\ln \left({x}^{2}\right)\right) \cdot \frac{1}{x}$

$\implies \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{4 \sin \left(\ln \left({x}^{2}\right)\right) \cos \left(\ln \left({x}^{2}\right)\right)}{x}$

That is our answer!

Was this helpful? Let the contributor know!
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Answer

Write a one sentence answer...

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

1
Apr 20, 2018

#### Answer:

$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{4 \sin \left(\ln {x}^{2}\right) \cos \left(\ln {x}^{2}\right)}{x}$

#### Explanation:

If $y = {\sin}^{2} \left(\ln {x}^{2}\right)$ then

$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{d}{\mathrm{dl} n {x}^{2}} {\sin}^{2} \left(\ln {x}^{2}\right) \frac{d}{\mathrm{dx}} \ln {x}^{2} = 2 \sin \left(\ln {x}^{2}\right) \cos \left(\ln {x}^{2}\right) \frac{2 x}{x} ^ 2 = \frac{4 \sin \left(\ln {x}^{2}\right) \cos \left(\ln {x}^{2}\right)}{x}$

Was this helpful? Let the contributor know!
##### Just asked! See more
• 25 minutes ago
• 26 minutes ago
• 28 minutes ago
• 29 minutes ago
• 9 minutes ago
• 15 minutes ago
• 15 minutes ago
• 18 minutes ago
• 20 minutes ago
• 21 minutes ago
• 25 minutes ago
• 26 minutes ago
• 28 minutes ago
• 29 minutes ago