#y'=x/y-x/(1-y)# using Separation of Variables?

1 Answer
Apr 25, 2018

# 1/2(1-2y)^2-ln|1-2y| = 4x^2 + A #

Explanation:

We have:

# y' = x/y - x/(1-y) #

Which we can write as:

# y' = x{1/y - 1/(1-y)} #

# \ \ \ = x{((1-y)-y)/(y(1-y))} #

# \ \ \ = x{(1-2y)/(y(1-y))} #

# :. (y(1-y))/(1-2y) \ dy/dx = x #

This is a separable DE, so we can "separate the variables":

# int \ (y(1-y))/(1-2y) \ dy = int \ x \ dx # ..... [A]

To integrate the LHS, consider:

# I = int \ (y(1-y))/(1-2y) \ dy #

Along with a substitution:

# u = 1-2y => (du)/dy = -2 \ \ # and #y = (1-u)/2 #

Which gives us:

# I = int \ ((1-u)/2 (1-(1-u)/2))/(u)(-1/2) \ du #

# \ \ = -1/4 \ int \ ((1-u) ((2-1+u)/2))/(u) \ du #

# \ \ = 1/8 \ int \ ((u-1)(u+1))/(u) \ du #

# \ \ = 1/8 \ int \ (u^2-1)/(u) \ du #

# \ \ = 1/8 \ int \ u-1/u \ du #

# \ \ = 1/8 {1/2u^2-ln|u| } #

Using this result, we can now fully integrate [A], to get:

# 1/8 {1/2(1-2y)^2-ln|1-2y| } = 1/2x^2 + C #

# :. 1/2(1-2y)^2-ln|1-2y| = 4x^2 + A #, say

Which is the Implicit General Solution.