If #x^2+y^2=25# and #dy/dt=6#, how do you find #dx/dt# when #y=4# ?

1 Answer
Sep 21, 2014

There are two values depending on the point.

#{dx}/{dt}={(-8 " at " (3,4)),(8 " at "(-3,4)):}#

Let us look at some details.

First, let us find the values of #x#.

By plugging in #y=4# into #x^2+y^2=25#,

#x^2+16=25 Rightarrow x^2=9 Rightarrow x=pm3#

Now, let us find some derivatives.

By differentiating with respect to #t#,

#d/{dt}(x^2+y^2)=d/{dt}(25) Rightarrow 2x{dx}/{dt}+2y{dy}/{dt}=0#

by dividing by #2x#,

#Rightarrow {dx}/{dx}+y/x{dy}/{dt}=0#

by subtracting #y/x{dy}/{dt}#,

#Rightarrow {dx}/{dt}=-y/x{dy}/{dt}#

Since #y=4#, #x=pm3#, and #{dy}/{dt}=6#,

#{dx}/{dt}=-{4}/{pm3}(6)=pm8#