How do you simplify fractional exponents? Algebra Exponents and Exponential Functions Fractional Exponents 1 Answer Wataru Nov 12, 2014 We can rewrite: #b^{m/n}=root{n}{b^m}# Example #3^{5/7}=root{7}{3^5}# I hope that this was helpful. Answer link Related questions What are Fractional Exponents? How do you convert radical expressions to fractional exponents? How do you evaluate fractional exponents? Why are fractional exponents roots? How do you simplify #(x^{\frac{1}{2}} y^{-\frac{2}{3}})(x^2 y^{\frac{1}{3}})#? How do you simplify #((3x)/(y^(1/3)))^3# without any fractions in the answer? How do you simplify #\frac{a^{-2}b^{-3}}{c^{-1}}# without any negative or fractional exponents... How do you evaluate #(16^{\frac{1}{2}})^3#? What is #5^0#? How do you simplify #25^(3/2)#? See all questions in Fractional Exponents Impact of this question 11988 views around the world You can reuse this answer Creative Commons License