How do you find the antiderivative of #tan^2(x) dx#

2 Answers
Feb 19, 2015

You can start by writing #tan^2(x)=sin^2(x)/cos^2(x)# giving:
#inttan^2(x)dx=intsin^2(x)/cos^2(x)dx=#

using: #sin^2(x)=1-cos^2(x)# you get:

#=int(1-cos^2(x))/(cos^2(x))dx=int[1/cos^2(x)-1]dx=#
#=int1/cos^2(x)dx-int1dx=#

#=tan(x)-x+c#

Feb 19, 2015

The answer is: #tanx-x+c#.

Remembering that the derivative of #y=tanx# is #y'=1+tan^2x#,

Than:

#inttan^2xdx=int(tan^2x+1-1)dx=#

#=int(tan^2x+1)dx-intdx=tanx-x+c#.