If you need to do this from the definition, the details will depend on your textbook and instructor's choice of definition:
You'll have one of:
#lim_(xrarr1)(y(x)-y(1))/(x-1)# or #lim_(hrarr0)(y(1+h)-y(1))/h#
Definition 1:
#lim_(xrarr1)(y(x)-y(1))/(x-1)=lim_(xrarr1)(sqrt(3x+1)-sqrt(3(1)+1))/(x-1)#
#=lim_(xrarr1)(sqrt(3x+1)-2)/(x-1)#
Notice that substitution leads to indeterminate form: #0/0#. The trick (technique) to try in this case is to rationalize the numerator. Multiply numerator and denominator by the conjugate of the numerator. (Multiply the top and bottom by #(sqrt(3x+1) + 2)#
#lim_(xrarr1)(y(x)-y(1))/(x-1)=lim_(xrarr1)[((sqrt(3x+1)-2))/(x-1) ((sqrt(3x+1) + 2))/((sqrt(3x+1) + 2))]#
#=lim_(xrarr1)(sqrt(3x+1)^2-2^2)/((x-1)(sqrt(3x+1) + 2)#
#=lim_(xrarr1)(3x+1-4)/((x-1)(sqrt(3x+1) + 2)#
#=lim_(xrarr1)(3x-3)/((x-1)(sqrt(3x+1) + 2)#
#=lim_(xrarr1)(3(x-1))/((x-1)(sqrt(3x+1) + 2)# (Still form #0/0#)
#=lim_(xrarr1)3/(sqrt(3x+1) + 2)# (No longer form #0/0#)
#=3/(sqrt(3(1)+1) + 2)=3/(2+2)=3/4#
Definition 2:
#lim_(hrarr0)(y(1+h)-y(1))/h =lim_(hrarr0)(sqrt(3(1+h)+1)-sqrt(3(1)+1))/h#
#=lim_(hrarr0)(sqrt(3h+4)-2)/h#
Notice that substitution leads to indeterminate form: #0/0#. The trick (technique) to try in this case is to rationalize the numerator. Multiply numerator and denominator by the conjugate of the numerator. (Multiply the top and bottom by #(sqrt(3h+4) + 2)#
#lim_(hrarr0)(y(1+h)-y(1))/h =lim_(hrarr0)((sqrt(3h+4)-2))/h ((sqrt(3h+4) + 2))/((sqrt(3h+4) + 2))#
# =lim_(hrarr0)((sqrt(3h+4)^2-2^2))/(h(sqrt(3h+4) + 2))#
# =lim_(hrarr0)(3h+4-4)/(h(sqrt(3h+4) + 2))# , (still form #0/0#)
# =lim_(hrarr0)(3h)/(h(sqrt(h+4) + 2))# , (still form #0/0#)
# =lim_(hrarr0)3/(sqrt(h+4) + 2)# , (no longer form #0/0#)
#=3/(sqrt(0+4) + 2)=3/(2+2)=3/4#