What is the derivative of e^x * e^(2x) * e^(3x)* e^(4x)?

2 Answers
Mar 27, 2015

First of all we should simplify it to
e^{x+2x+3x+4x}=e^{10x}.
The derivative is then simpy 10e^{10x}.

Mar 27, 2015

It is 10*e^x*e^(2x)*e^(3x)*e^(4x)

f(x)=e^x*e^(2x)*e^(3x)*e^(4x)=e^(x+2x+3x+4x)=e^(10x)

so f'(x)=3^(10x)*10=10e^(10x) You could leave it that way, but a teacher who would ask such a question I would give the more cumbersome answer stated above.

(note that since we got f(x)=e^(10x), we have now found that f'(x)=10f(x) -- that's why we can quickly rewrite as I did in the first line.)

(Or worse yet, I'd use the multiple factor product rule:

d/(dx)(f_1f_2f_3 * * * f_n)=f_1'f_2f_3 * * * f_n+f_1f_2'f_3 * * * f_n+f_1f_2f_3' * * * f_n+* * * +f_1f_2f_3 * * * f_n'

So for this function we could write:
f'(x)=color(red)(e^x)*e^(2x)*e^(3x)*e^(4x) + e^x*color(red)(e^(2x)*2)*e^(3x)*e^(4x)+e^x*e^(2x)*color(red)(e^(3x)*3)*e^(4x)+e^x*e^(2x)*e^(3x)*color(red)(e^(4x)*4)

(derivatives are in color(red)(red))
(It's correct, but I'd probably lose points for not simplifying.)