How do you solve #sin(x+pi/4)+sin(x-pi/4)=1# over the interval #(0,2pi)#?

1 Answer
Apr 17, 2015

Use the trig identity: #color(blue)(sin (a + b) + sin (a - b) = 2sin a*cos b)#

#f(x) = 2*sin x*cos (pi/4) - 1 = 0# ,

since #color(blue)(cos (pi/4) = (sqrt2)/2#

#f(x) = (sqrt2*sin x) - 1 = 0#

#sin x = 1/sqrt2 = (sqrt2)/2 --> #

#color(red)(x = pi/4 and 3pi/4# (inside interval #0 - 2pi#)

Check:
#x = pi/4 --> x + pi/4 = pi/2 --> sin (x + pi/4) = 1; cos (x + pi/4) = 0 --> f(x) = 1 - 1 = 0#. Correct.
#x = 3pi/4 --> (x + pi/4) = pi --> sin pi = 0; cos pi = -1 --> f(x) = 1 - 1 = 0.# Correct