What is the integral from 0 to 1 of #x*sqrt(x^2+8)#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer GiĆ³ May 6, 2015 Try this: #intxsqrt(x^2+8)dx=# But #d[x^2+8]=2xdx# So: #1/2intsqrt(x^2+8)d[x^2+8]=# #=1/2int(x^2+8)^(1/2)d[x^2+8]=1/2((x^2+8)^(3/2))/(3/2)# Between #0# and #1#: #=1/3(x^2+8)^(3/2)|_0^1#=#9-8/3sqrt(8)=9-16/3sqrt(2)# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 1458 views around the world You can reuse this answer Creative Commons License