How would I determine the value of the trig ratios when I'm given the angle in radians for example #cot 0.942#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer bp May 13, 2015 Since #pi# equals 3.14, 0.942 would be #pi/10#. Therefore, if #cot (pi/10)# is given, all trignometrical ratios can be determined. #Sin (pi/10) = 1/sqrt(1+cot^2 (pi/10)# #cos (pi/10)= sqrt (1- sin^2 (pi/10)# #tan(pi/10)= 1/cot(pi/10)# #csc(pi/10)= sqrt(1+cot^2 (pi/10)# #sec(pi/10)= 1/cos (pi/10)# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 1497 views around the world You can reuse this answer Creative Commons License