I thought it would be interesting to derive #d/(dx) (ln x) #
We know the definition of the derivative is:
# (d(f(x)))/dx = lim_(h to 0) (f(x+h)-f(x))/h #
#=> d/(dx) ( lnx) = (ln(x+h) - lnx )/h #
Using our log laws:
#lim_(h to 0) (ln( (x+h)/x ) )/h #
We know # (x+h)/x = 1 + h/x #
#=> lim_(h to 0) (ln(1+h/x))/h #
#color(red)(--------------)#
The not so interesting way:
As #h to 0# the denominator and numirator #-> 0 #
So know we can use the L'Hopitals rule:
#=> lim_(h to 0 ) (d/(dh) ( ln(1+h/x) ))/( d/(dh)( h )) #
#=> lim_(h to 0 ) ((1/x)/(1+h/x) )/1 #
#= 1/x #
#color(red)(--------------)#
Or we could use the initial way:
#=> lim_(h to 0) (1+h/x)^(1/h) = e^(1/x)#
As we know:
#color(blue)(--------------)#
#lim_(phi to oo) (1+ 1/(phi))^phi = e #
#lim_(phi to 0) (1+ phi)^(1/phi) = e #
# therefore lim_(phi to 0) (1+ phi/gamma )^(gamma/phi) = e#
Raising each side to #1/gamma # power
#lim_(phi to 0) (1 + phi/gamma)^(1/phi) = e^(1/gamma) #
#color(blue)(--------------)#
Raising each side by the power of #h#:
#=> lim_(h to 0) (1+h/x) = e^(h/x) #
#=> lim_(h to 0) ln(e^(h/x)) /h #
#=> lim_(h to 0) ((h/x)* ln(e))/h #
#( ln(e) = 1 ) #
#=> lim_(h to 0) 1/x #
#= 1/x #