How do you find the six trigonometric functions of 300 degrees? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 25, 2015 Use the trig unit circle as proof. #sin 300 = sin (-60 + 360) = sin (-60) = -sin 60 =## (-sqrt3)/2# #cos 300 = cos (-60 + 300) = cos 60 = 1/2# #tan 300 = (-sqrt3)/2 : (1/2) = -sqrt3# #cot 300 = 1/(sqrt3) = (-sqrt3)/3# #sec 300 = 1/cos 300 = -2/(sqrt3) = (-2sqrt3)/3# #csc 300 = 1/sin 300 = 2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 42968 views around the world You can reuse this answer Creative Commons License