How do you find the integral of #(6t)/sqrt(36-t^2)#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer bp Jun 2, 2015 Consider 36 -#t^2# =u, so that tdt=#-1/2# du #int (6tdt)/sqrt(36-t^2)=int -6/2 (du)/sqrtu# = -3*2 #u^(1/2)# = -6#sqrt(36-t^2)# +C Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 1818 views around the world You can reuse this answer Creative Commons License