How do you find the derivative of #g(t) = (ln(kt)+2t) / (ln(kt)-2t)#?

1 Answer
Jun 3, 2015

Here, we'll use the quotient rule, which states that, be #y=f(x)/g(x)#,

#(dy)/(dx)=(f'(x)g(x)-f(x)g'(x))/g(x)^2#

Let's just find the derivatives and use the function properly:

  • #f(x)=lnkt+2t#

  • #f'(x)# will demand chain rule, which states: #(dy)/(dx)=(dy)/(du)(du)/(dx)#

Thus, renaming #u=kt#, we have #f'(x)=(1/u)(k)+2=(cancel(k)/(cancel(k)t))+2=1/t+2#

  • #g(x)=lnkt-2t#

  • #g'(x)# follows the logic for #f'(x)#: #g'(x)=1/t-2#

Now, applying the quotient rule:

#(dy)/(dx)=((1/t+2)(lnkt-2t)-(lnkt+2t)(1/t-2))/(lnkt-2t)^2#

#(dy)/(dx)=(cancel((lnkt)/t)-2+2lnktcancel(-4)tcancel(-(lnkt)/t)+2lnkt-2cancel(+4t))/(lnkt-2t)^2#

#(dy)/(dx)=(4lnkt-4)/(lnkt-2t)^2=(4(lnkt-1))/(lnkt-2t)^2#