How do you solve #9y^2+16= -24#?

1 Answer
Jun 25, 2015

I am not sure that your question is complete so I included two versions: have a look:

Explanation:

1] As it is:
#9y^2+16=-24#
#9y^2=-16-24#
#y^2=-40/9#
If you use complex numbers you can introduce the imaaginary unit #i=sqrt(-1)# and get:
#y=+-sqrt(-40/9)#
#y=+-sqrt(-1*40/9)#
#y=+-isqrt(40/9)=+-isqrt(4*10/9)=+-2/3isqrt(10)#

2] How I think it is:
#9y^2+16=-24color(red)(x)#
#9y^2+24y+16=0#
Using the Quadratic Formula:
#y_(1,2)=(-24+-sqrt(576-576))/18=-24/18=-4/3#