How do you solve #ln(x+6)+ln(x-6)=0#?

1 Answer
Jul 8, 2015

I found: #x=sqrt(37)=6.082#

Explanation:

You can start by using the rule of logs:
#loga+logb=log(a*b)#

In your case you get:
#ln[(x+6)*(x-6)]=0#

Now you can use the definition of log as:
#log_ax=b -> x=a^b# remembering that the natural log is: #lnx=log_ex#

so:
#(x+6)(x-6)=e^0#
#(x+6)(x-6)=1#
rearranging:
#x^2-36=1#
#x^2=37#
#x=+-sqrt(37)=+-6.082#
The negative #x# cannot be accepted (substituted back it gives a negative argument in the original logs).