How do you divide #(3x^2 y^7 z^3) /(4x^3 y^-2 z)#? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer Alan P. Jul 10, 2015 #(3x^2y^7z^3)/(4x^3y^(-2)z) = (3y^9z^2)/(4x)# Explanation: #(3x^2y^7z^3)/(4x^3y^(-2)z)# #color(white)("XXXX")##= (3/4) * ((x^2)/(x^3)) * ((y^7)/(y^(-2))) * (z^3/z)# #color(white)("XXXX")##=(3/4) * (1/x) * (y^9/1) * (z^2/1)# #color(white)("XXXX")##= (3y^9z^2)/(4x)# Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression #(2^2/3^3)^3#? How do you simplify the expression #\frac{a^5b^4}{a^3b^2}#? How do you simplify #((a^3b^4)/(a^2b))^3# using the exponential properties? How do you simplify #\frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}#? Which exponential property do you use first to simplify #\frac{(2a^2bc^2)(6abc^3)}{4ab^2c}#? How do you simplify #(x^5y^8)/(x^4y^2)#? How do you simplify #[(2^3 *-3^2) / (2^4 * 3^-2)]^2#? See all questions in Exponential Properties Involving Quotients Impact of this question 1586 views around the world You can reuse this answer Creative Commons License