Here's another method which has its own uses.
First, send every thing to one side
#=>sin(3x)-cos(3x)=0#
Next, express #sin3x-cos3x# as #Rcos(3x+lambda)#
#R# is a positive real and #lambda# is an angle
#=>sin(3x)-cos(3x)= Rcos(3x+lambda)#
#=>-cos(3x)+sin(3x)= Rcos(3x)coslambda-Rsin(3x)sinlambda#
Equate the coefficients of #cosx# and #sinx# on both sides
#=>" "Rcoslambda=-1 " "...color(red)((1))#
#" "-Rsinlambda=1 " "...color(red)((2))#
#color(red)(((2))/((1)))=>-(-Rsinlambda)/(Rcoslambda)=1/(-1)#
#=>tanlambda=1=>lambda=pi/4#
#color(red)((1)^2) + color(red)((2)^2) => (Rcoslambda)^2+(-Rsinlambda)^2=(-1)^2+(1)^2#
#=>R^2(cos^2lambda+sin^2lambda)=2#
#=>R^2(1)=2=>R=sqrt(2)#
So, #sin(3x)-cos(3x)=sqrt(2)cos(3x+pi/4)=0#
#=>cos(3x+pi/4)=0#
#=>3x+pi/4=+-pi/2+2pik#
Where #kinZZ#
Make #x# the subject
#=>x=+-pi/6-pi/12+2pik#
So we two sets of solutions :
#color(blue)(x={(pi/12+(2pik)/3),(" "color(black)and),(-pi/4 + (2pik)/3):})#
When #k=0=>x=pi/12+(2pi(0))/3=pi/12#
and #x=-pi/4+(2pi(0))/3=-pi/4#
When #k=1=>x=pi/12+(2pi)/3=(9pi)/12=(3pi)/4#
and #x=-pi/4+(2pi)/3=(5pi)/12#