How do you simplify #(x+3) /( x+1) div (x^2+5x+6)#? Algebra Rational Equations and Functions Division of Rational Expressions 1 Answer MeneerNask Jul 27, 2015 In cases like this you try to factorise and cancel Explanation: #=cancel(x+3)/(x+1)-:cancel((x+3))(x+2)# #=1/(x+1)*1/(x+2)# #=1/((x+1)(x+2))=1/(x^2+3x+2)# Answer link Related questions What is Division of Rational Expressions? How does the division of rational expressions differ from the multiplication of rational expressions? How do you divide 3 rational expressions? How do you divide rational expressions? How do you divide and simplify #\frac{9x^2-4}{2x-2} -: \frac{21x^2-2x-8}{1} #? How do you divide and reduce the expression to the lowest terms #2xy \-: \frac{2x^2}{y}#? How do you divide #\frac{x^2-25}{x+3} \-: (x-5)#? How do you divide #\frac{a^2+2ab+b^2}{ab^2-a^2b} \-: (a+b)#? How do you simplify #(w^2+6w+5)/(w+5)#? How do you simplify #(x^4-256)/(x-4)#? See all questions in Division of Rational Expressions Impact of this question 1396 views around the world You can reuse this answer Creative Commons License