What is the derivative of #y=2(x^(3)-1)(3x^(2)+1)^4#?
1 Answer
Explanation:
You can differentiate this function by using the product rule and the chain rule.
If you write
#y = f(x) * g(x)#
then you can say that the derivative of
#d/dx(y) = 2 * [[d/dx(f(x))] * g(x) + f(x) * d/dx(g(x))]#
In your case,
#y^' = 2 [d/dx(x^3-1) * (3x^2 + 1)^4 + (x^3-1) * d/dx(3x^2+1)^4]#
To determine
#g(u) = u^4# , with#u = 3x^2 + 1#
#d/dx(g(u)) = d/(du)(u^4) * d/dx(u)#
#d/dx(g(u)) = 4u^3 * d/dx(3x^2 + 1)#
#d/dx(3x^2+1) = 4(3x^2+1)^3 * 6x#
Your target derivative will thus be
#y^' = 2 * [3x^2 * (3x^2+1)^4 + (x^3-1) * 24x * (3x^2+1)^3]#
#y^' = 2 * 3x * (3x^2 + 1) * [x * (3x^2 + 1) + (x^3-1) * 8]#
#y^' = 6x(3x^2 + 1) * (3x^3 + x + 8x^3 - 8)#
#y^' = color(green)(6x(3x^2 + 1) * (11x^3 +x - 8))#