How do you find the six trigonometric functions of #(-3pi)/2# degrees?

1 Answer
Aug 12, 2015

If you really* meant degrees you will need to use a calculator;
if you meant #(-3pi)/2#
radians**, note that #(-3pi)/2# is equivalent to #pi/2# and use the standard trig values.

Explanation:

Degrees
#(-3pi)/2# degrees #= -0.08225# degrees
from there you can use a calculator to determine (for example)
#color(white)("XXXX")##sin(-0.08225^o) = -0.00144#
#color(white)("XXXX")##color(white)("XXXX")#(I know of no other way to find this value)

Radians
#(-3pi)/2 = pi/2#
enter image source here

Using the standard trigonometric ratios:
#sin((-3pi)/2) = sin(pi/2) = 1##color(white)("XXXX")##csc((-3pi)/2) = 1/sin((-3pi)/2) = 1#

#cos((-3pi)/2) = cos(pi/2) = 0##color(white)("XXXX")##sec((-3pi)/2) = 1/cos((-3pi)/2) = "undefined"#

#tan((-3pi)/2) = sin(pi/2)/cos(pi/2) = "undefined"##color(white)("XXXX")##cot((-3pi)/2) = cos(pi/2)/sin(pi/2) = 0#