How do you solve #ln(x)=3+ln(x-3)#?

1 Answer
Aug 13, 2015

#color(red)( x=(3e^3)/(e^3-1))#

Explanation:

#lnx=3+ln(x-3)#

Subtract #ln(x-3)# from each side.

#lnx-ln(x-3)=3#

Recall that #lna-lnb=ln(a/b)#.

#ln(x/(x-3)) = 3#

Convert the logarithmic equation to an exponential equation.

#e^ln(x/(x-3)) = e^3#

Remember that #e^lnx =x#, so

#x/(x-3)=e^3#

#x=e^3(x-3) = xe^3-3e^3#

#xe^3-x=3e^3#

#x(e^3-1)=3e^3#

#x=(3e^3)/(e^3-1)#

Check:

# lnx=3+ln(x-3)#

If #x=(3e^3)/(e^3-1)#,

#ln((3e^3)/(e^3-1)) = 3+ln((3e^3)/(e^3-1)-3)#

#ln(3e^3)-ln(e^3-1)=3+ln((3e^3-3(e^3-1))/(e^3-1))#

#ln(3e^3)-ln(e^3-1)=3+ln((color(red)(cancel(color(black)(3e^3)))-color(red)(cancel(color(black)(3e^3)))+3)/(e^3-1))#

#ln(3e^3)-color(red)(cancel(color(black)(ln(e^3-1))))=3+ln3-color(red)(cancel(color(black)(ln(e^3-1))))#

#ln3+3=3+ln3#

#x=(3e^3)/(e^3-1)# is a solution.