How do you find the integral of #sqrt(9-x^2)dx#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer dani83 Aug 17, 2015 # int sqrt(9-x^2)dx = 9/2(sin^(-1) (x/3) + x/3sqrt(1-(x/3)^2)) + C # Explanation: # sin^2 A + cos^2 A = 1 # # cos 2A = 2cos^2 A - 1 # # sin 2A = 2sin Acos A # Use substitution. # x = 3 sin t # # int sqrt(9-x^2)dx = int 3sqrt(1-sin^2 t) xx 3 cos t dt = 9 int cos^2 t dt # # 9int cos^2 tdx = 9/2 int (1+cos 2t)dt = 9/2 (t + 1/2sin 2t) + C # In terms of #x#: # int sqrt(9-x^2)dx = 9/2(sin^(-1) (x/3) + x/3sqrt(1-(x/3)^2)) + C # Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 24207 views around the world You can reuse this answer Creative Commons License