How do you find the exact functional value csc(-255 degrees) using the cosine sum or difference identity?

1 Answer
Sep 6, 2015

Find #csc (-255)#

Ans: #2/sqrt(2 + sqrt3)#

Explanation:

#csc (-244) = 1/sin (-255).# Find sin (-255).
sin (-255) = sin (105 - 360) = sin 105 = sin (15 + 90) = cos 15
Apply the trig identity: #cos 2a = 2cos^2 a - 1#
#cos 30 = sqrt3/2 = 2cos^2 15 - 1#
#2cos^2 15 = 1 + sqrt3/2 = (2 + sqrt3)/2#
#cos^2 15 = (2 + sqrt3)/4# --> #cos 15 = +- sqrt(2 + sqrt3)/2#
Since cos 15 is positive, then
#sin (-255) = cos 15 = sqrt(2 + sqrt3)/2#
#csc (-255) = 1/sin (-255) = 2/sqrt(2 + sqrt3)#
Check by calculator.
sin (-255) = 0.97
#sqrt(2 + sqrt3)/2 = sqrt(3.732) = 1.93/2 = 0.97.# OK