How do you solve #sin x + cos x = 1#?

2 Answers

Refer to explanation

Explanation:

Squaring both sides of the equation yields to

#sinx+cosx=1=>(sinx+cosx)^2=1^2=>sin^2x+cos^2x+2cosxsinx=sin^2x+cos^2x=>sinx*cosx=0=>sinx=0 or cosx=0#

The solutions to #sinx=0 or cosx=0# are #0,90,270,360# but #270# does not satisfy the original equation.
So the solutions are #0^o,90^o,360^o#

The following identities were used

#sin^2x+cos^2x=1#

#(a+b)^2=a^2+b^2+2ab#

Sep 23, 2015

Solve sin x + cos x = 1

Ans: x = 0 and #x = pi/2# and #x = 2pi#

Explanation:

Use the trig identity: #sin x + cos x = sqrt2.sin (x + pi/4)#
We get:
#sin (x + pi/4) = sqrt2/2# --> #(x + pi/4) = sin pi/4#
and #(x + pi/4) = sin ((3pi)/4)#

a. #x + pi/4 = pi/4# --> #x = 0# and #x = 2pi#
b. #x + pi/4 = ((3pi)/4)# --> #x = ((3pi)/4) - pi/4 = pi/2#

Check.
x = 0 --> sin x = 0; cos x = 1. Then 0 + 1 = 1. OK
#x = pi/2# --> sin x = 1; cos x = 0. Then 1 + 0 = 1 . OK