How do you find a power series representation for #f(x)= 1/(1+x)# and what is the radius of convergence?
1 Answer
Oct 5, 2015
#sum_(n=0)^oo (-1)^n x^n# with radius of convergence#1#
Explanation:
Start writing out a power series which when multiplied by
#1 = (1+x)(1-x+x^2-x^3+x^4-...)#
We choose each successive term to cancel out the extraneous term left over by the previous ones.
Then writing it out formally...
#(1+x) sum_(n=0)^N (-1)^n x^n#
#= sum_(n=0)^N (-1)^n x^n + x sum_(n=0)^N (-1)^n x^n#
#= sum_(n=0)^N (-1)^n x^n - sum_(n=1)^(N+1) (-1)^n x^n#
#= (-1)^0x^0 - (-1)^(N+1)x^(N+1) = 1 - (-x)^(N+1)#
So if
#(1+x) sum_(n=0)^oo (-1)^n x^n = 1#
Conversely, if
So the radius of convergence is