How do you simplify #(4x-1)/(3x) + (x-8)/(5x)#?

1 Answer
Oct 14, 2015

The answer is #(23x-29)/(15x)#.

Explanation:

#(4x-1)/(3x)+(x-8)/(5x)#

The LCD is #15#. Multiply each fraction so that its denominator will be #15x#.

#(4x-1)/(3x)xx5/5+(x-8)/(5x)xx3/3=#

#(5(4x-1))/(5(3x))+(3(x-8))/(3(5x)=#

Distribute the #5# and the #3# in the numerators and simplify #5*3x# to #15x# and #3*5x# to #15x#.

#(20x-5)/(15x)+(3x-24)/(15x)#

Combine the numerators over the denominator #15x#.

#(20x-5+3x-24)/(15x)#

Combine like terms.

#(20x+3x-5-24)/(15x)=#

#(23x-29)/(15x)#