How do you find the maclaurin series expansion of # f(x) = 1 / (1-x)#?

1 Answer
Oct 20, 2015

The simplest way is to use the geometric series formula #a+ar+ar^2+ar^3+cdots=a/(1-r)# when #|r| < 1# to get #f(x)=1/(1-x)=1+x+x^2+x^3+x^4+cdots# for #|x| < 1#. You can also use the general formula for Maclaurin series expansions as shown below.

Explanation:

Given #f(x)=1/(1-x)=(1-x)^(-1)#, if we want to use the general formula, we must compute:

#f'(x)=-(1-x)^{-2} * (-1)=(1-x)^{-2}#

#f''(x)=-2(1-x)^{-3} * (-1) = 2(1-x)^{-3}#

#f'''(x)=-6(1-x)^{-4) * (-1)=6(1-x)^{-4}#, etc...

and #f(0)=1#, #f'(0)=1#, #f''(0)=2=2!#, #f'''(0)=6=3!#, etc...

Therefore

#f(0)+f'(0)x+(f''(0))/(2!)x^2+(f'''(0))/(3!)x^3+(f''''(0))/(4!)x^4+cdots#

#=1+x+x^2+x^3+x^4+cdots#

The Ratio Test can also be used to confirm this converges for #|x|<1#.