Show that #(2cos^2(x/2)tanx)/(tanx) = (tanx+cosxtanx)/(tanx)#?
1 Answer
Oct 24, 2015
Okay, let's consider dividing both sides by
#(2cos^2(x/2)cancel(tanx))/cancel(tanx) = (cancel(tanx)(1 + cosx))/cancel(tanx)#
#2cos^2(x/2) = 1 + cosx => 2cos^2(x/2) - 1 = cosx#
Notice how we can use the identity
#2cos^2(x/2) - [sin^2(x/2) + cos^2(x/2)] = cosx#
#2cos^2(x/2) - sin^2(x/2) - cos^2(x/2) = cosx#
#cos^2(x/2) - sin^2(x/2) = cosx#
Then, we can use the identity
#cos(x/2)cos(x/2) - sin(x/2)sin(x/2) = cosx#
#cos(x/2 + x/2) = cosx#
#color(blue)(cosx = cosx)#