How do you find the maclaurin series expansion of #x^3/(1+x^2)#?
1 Answer
Oct 25, 2015
Use the Maclaurin series for
#x^3/(1+x^2) = sum_(n=0)^oo (-1)^n x^(2n+3)#
Explanation:
The Maclaurin series for
since
Substitute
#1/(1+x^2) = sum_(n=0)^oo (-x^2)^n = sum_(n=0)^oo (-1)^n x^(2n)#
Then multiply by
#x^3/(1+x^2) = x^3 sum_(n=0)^oo (-1)^n x^(2n) = sum_(n=0)^oo (-1)^n x^(2n+3)#
This is a geometric series with common ratio