What are the six trig function values of #(19pi)/3#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Nov 4, 2015 Find the six trig functions of #(19pi)/3# Explanation: #sin ((19pi)/3) = sin (pi/3 + 6pi) = sin (pi/3) = sqrt3/2# #cos ((19pi)/3) = cos (pi/3 + 6pi) = cos (pi/3) = 1/2# #tan ((19pi)/3) = sin/(cos) = (sqrt3/2)(2/1) = sqrt3# #cot ((19pi)/3) = 1/(tan) = 1/sqrt3 = sqrt3/3# #sec ((19pi)/3)= 1/(cos) = 2# #csc ((19pi)/3) = 1/(sin) = 2/sqrt3 = (2sqrt3)/3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 13174 views around the world You can reuse this answer Creative Commons License