What are the six trig function values of #(5pi)/4#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Nov 4, 2015 find 6 trig function values of #(5pi)/4# Explanation: #sin ((5pi)/4) = sin (pi/4 + pi) = - sin (pi/4) = -sqrt2/2# #cos ((5pi)/4) = cos (pi/4 + pi) = - cos (pi/4) = -sqrt2/2# #tan ((5pi)/4) = sin/(cos) = (-sqrt2)/(-sqrt2) = 1# #cot ((5pi)/4) = 1/(tan) = 1# #sec ((5pi)/4) = 1/(cos) = - 2/sqrt2 = - 2sqrt2/2 = -sqrt2# #csc ((5pi)/4) = 1/(sin) = -sqrt2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 26618 views around the world You can reuse this answer Creative Commons License