How do you evaluate cos (-8pi/3)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Nov 26, 2015 Evaluate #cos ((-8pi)/3)# Explanation: Unit circle and Trig Table of Special Arcs --> #cos ((-8pi)/3) = cos ((-2pi)/3 - (6pi)/3) = cos ((-2pi)/3 - 2pi) = cos ((-2pi)/3) = cos ((2pi)/3) = -1/2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 12250 views around the world You can reuse this answer Creative Commons License