How do you find the maclaurin series expansion of #f(x)= x sinx#?
1 Answer
Nov 28, 2015
Derive or recall the Maclaurin expansion for
Explanation:
If you know the Maclaurin series for
Let's derive the Maclaurin expansion for
Let
Then:
#s(x) = sum_(n=0)^oo (s^((n))(0))/(n!) x^n#
#s^((0))(0) = sin(0) = 0#
#s^((1))(0) = cos(0) = 1#
#s^((2))(0) = -sin(0) = 0#
#s^((3))(0) = -cos(0) = -1#
Then
Hence:
#sin(x) = sum_(n=0)^oo (s^((n))(0))/(n!) x^n#
#=x/(1!)-x^3/(3!)+x^5/(5!)-x^7/(7!)+...#
#=sum_(n=0)^oo (-1)^n/((2n+1)!) x^(2n+1)#
So:
#f(x) = x sin(x) = x sum_(n=0)^oo (-1)^n/((2n+1)!) x^(2n+1)#
#= sum_(n=0)^oo (-1)^n/((2n+1)!) x^(2n+2)#