How do you find the maclaurin series expansion of #f(x)= x sinx#?

1 Answer
Nov 28, 2015

Derive or recall the Maclaurin expansion for #sin(x)# and multiply it by #x#.

Explanation:

If you know the Maclaurin series for #sin(x)# just multiply it by #x#

Let's derive the Maclaurin expansion for #sin(x)# in case you don't:

Let #s(x) = sin(x)#

Then:

#s(x) = sum_(n=0)^oo (s^((n))(0))/(n!) x^n#

#s^((0))(0) = sin(0) = 0#

#s^((1))(0) = cos(0) = 1#

#s^((2))(0) = -sin(0) = 0#

#s^((3))(0) = -cos(0) = -1#

Then #s^((4k+n))(x) = s^((n))(x)#

Hence:

#sin(x) = sum_(n=0)^oo (s^((n))(0))/(n!) x^n#

#=x/(1!)-x^3/(3!)+x^5/(5!)-x^7/(7!)+...#

#=sum_(n=0)^oo (-1)^n/((2n+1)!) x^(2n+1)#

So:

#f(x) = x sin(x) = x sum_(n=0)^oo (-1)^n/((2n+1)!) x^(2n+1)#

#= sum_(n=0)^oo (-1)^n/((2n+1)!) x^(2n+2)#