How do you differentiate #f(x)=e^(x^2)/(e^(2x)-2x)# using the quotient rule? Calculus Basic Differentiation Rules Quotient Rule 1 Answer mason m Nov 30, 2015 #f'(x)=(2e^(x^2)(xe^(2x)-2x^2-e^(2x)+1))/(e^(2x)-2x)^2# Explanation: According to the quotient rule: #f'(x)=((e^(2x)-2x)overbrace(d/dx[e^(x^2)])^(2xe^(x^2))-e^(x^2)overbrace(d/dx[e^(2x)-2x])^(2e^(2x)-2))/(e^(2x)-2x)^2# #f'(x)=(2xe^(x^2)(e^(2x)-2x)-e^(x^2)(2e^(2x)-2))/(e^(2x)-2x)^2# #f'(x)=(2e^(x^2)(xe^(2x)-2x^2-e^(2x)+1))/(e^(2x)-2x)^2# Answer link Related questions What is the Quotient Rule for derivatives? How do I use the quotient rule to find the derivative? How do you prove the quotient rule? How do you use the quotient rule to differentiate #y=(2x^4-3x)/(4x-1)#? How do you use the quotient rule to differentiate #y=cos(x)/ln(x)#? How do you use the quotient rule to find the derivative of #y=tan(x)# ? How do you use the quotient rule to find the derivative of #y=x/(x^2+1)# ? How do you use the quotient rule to find the derivative of #y=(e^x+1)/(e^x-1)# ? How do you use the quotient rule to find the derivative of #y=(x-sqrt(x))/(x^(1/3))# ? How do you use the quotient rule to find the derivative of #y=x/(3+e^x)# ? See all questions in Quotient Rule Impact of this question 1364 views around the world You can reuse this answer Creative Commons License