How do you integrate #int(x^2) / ( x^2 + 3x +2) dx# using partial fractions?

1 Answer
Dec 3, 2015

#int (x^2)/(x^2 +3x+2)dx = x- 4 ln |x+2| + ln|x+1| +C#

Explanation:

Original
#int x^2/(x^2+3x+2)dx " " " " " " (1)#

Step 1: Rewrite the expression as a proper fraction (using long division)

#((x^2)/(x^2 + 3x+2)) = 1 -(3x+2)/(x^2 +3x+2) " " " " " (2)#

#int 1dx -int((3x+2)/(x^2 +3x+2))dx " " " " " " "(3)#

Step 2: Factor the denominator #(3)#

#(3x+2)/(x^2 + 3x +2) = (3x+2)/((x+1)(x+2))#

Set up the partial fraction decomposition
#(3x+2)/(x^2 + 3x +2) =#

#=(3x+2)/((x+1)(x+2)) = color(red)A/(x+2) + color(red)B/(x+1) " " " " " " (4)#

Multiply LCD (least common denominator)

#(3x+2) = A(x+1) + B(x+2)#

Let #x= -1#
#(3*-1+2)= A(-1+1)+B(-1+2)#
#color(red)(-1= B)#

Let #x= -2#
#3*-2+2= A(-2+1)+B(-2+2)#
#-4 = -A#
#color(red)(4=A)#

Rewrite #(3)#
#color(red)4/(x+2) - color(red) (1)/(x+1)#

Rewrite (2)

#int x^2/(x^2 +3x+2)dx = int 1 dx -(int 4/(x+2)dx -int(1)/(x+1) dx)#

#=int 1*dx -int 4/(x+2) dx +int 1/(x+1) dx#

#color(blue)( =x -4 ln|x+2| -ln|x+1| +C) " " " " " (5)#

I hope this help.