How do you find the sum of the first six terms of the geometric sequence 1, 1.5, 2, 2.25, ...?
1 Answer
This is not a geometric sequence. The term
Without the
Explanation:
Discarding the errant term
The general formula for a term of a geometric sequence is:
#a_n = a r^(n-1)#
where
For our sequence
Then:
#(r-1) sum_(n=1)^N a_n#
#=(r-1) sum_(n=1)^N a r^(n-1)#
#=r sum_(n=1)^N a r^(n-1) - sum_(n=1)^N a r^(n-1)#
#=sum_(n=2)^(N+1) a r^(n-1) - sum_(n=1)^N a r^(n-1)#
#= a r^N + color(red)(cancel(color(black)(sum_(n=2)^N a r^(n-1)))) - a - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1))))#
#= a(r^N-1)#
So:
#sum_(n=1)^N a_n = (a(r^N-1))/(r-1)#
So for our sequence:
#sum_(n=1)^6 a_n = (1(1.5^6-1))/(1.5-1)#
#=2((3/2)^6-1)#
#=2(729/64-1)#
#=(729-64)/32#
#=665/32#
#=20.78125#