How do you differentiate #f(x)=e^(csc2x)# using the chain rule.? Calculus Basic Differentiation Rules Chain Rule 1 Answer sente Dec 14, 2015 #f'(x) = -2e^csc(2x)csc(2x)cot(2x)# Explanation: Using the chain rule, we get #f'(x) = d/dxe^(csc(2x))# #= e^(csc(2x))(d/dxcsc(2x))# #= e^(csc(2x))(-csc(2x)cot(2x))(d/dx2x)# #=e^(csc(2x))(-csc(2x)cot(2x))(2)# Thus #f'(x) = -2e^csc(2x)csc(2x)cot(2x)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1391 views around the world You can reuse this answer Creative Commons License