How do you solve #ln x + ln (x+5) = ln 14#?

1 Answer
Dec 19, 2015

I found #x=2#

Explanation:

Use the property of the log:
#logx+logy=log(x*y)#
to get:
#ln[x(x+5)]=ln(14)#
for the logs to be equal the arguments must be equal as well, or:
#x(x+5)=14#
solve for #x#:
#x^2+5x-14=0#
Use the Quadratic Formula:
#x_(1,2)=(-5+-sqrt(25+56))/2=(-5+-sqrt(81))/2=(-5+-9)/2=#
two solutions:
#x_1=-7# NO it gives you a negative argument in the original logs.
#x_2=2# YES